
LREC’18

COGCOMPNLP: Your Swiss Army Knife for NLP

Daniel Khashabi1, Mark Sammons1, Ben Zhou2 , Tom Redman2

Christos Christodoulopoulos3 , Vivek Srikumar4 , Nicholas Rizzolo5 , Lev Ratinov
Guanheng Luo2 , Quang Do6 , Chen-Tse Tsai7 , Subhro Roy8 , Stephen Mayhew1

Zhili Feng9 , John Wieting10 , Xiaodong Yu2 , Yangqiu Song11 , Shashank Gupta2

Shyam Upadhyay1 , Naveen Arivazhagan5 , Qiang Ning2 , Shaoshi Ling2 , Dan Roth1,2

1Univ. of Pennsylvania 2Univ. of Illinois at Urbana-Champaign 3Amazon Research Cambridge 4Univ. of Utah 5Google
6Anduin Transactions 7Bloomberg L.P. 8MIT CSAIL 9Univ. of Wisconsin-Madison 10Carnegie Mellon University 11HKUST

Abstract
Implementing a Natural Language Processing (NLP) system requires considerable engineering effort: creating data-structures to rep-
resent language constructs; reading corpora annotations into these data-structures; applying off-the-shelf NLP tools to augment the
text representation; extracting features and training machine learning components; conducting experiments and computing performance
statistics; and creating the end-user application that integrates the implemented components. While there are several widely used NLP
libraries, each provides only partial coverage of these various tasks. We present our library COGCOMPNLP which simplifies the pro-
cess of design and development of NLP applications by providing modules to address different challenges: we provide a corpus-reader
module that supports popular corpora in the NLP community, a module for various low-level data-structures and operations (such as
search over text), a module for feature extraction, and an extensive suite of annotation modules for a wide range of semantic and
syntactic tasks. These annotation modules are all integrated in a single system, PIPELINE, which allows users to easily use the anno-
tators with simple direct calls using any JVM-based language, or over a network. The sister project COGCOMPNLPY enables users
to access the annotators with a Python interface. We give a detailed account of our system’s structure and usage, and where possi-
ble, compare it with other established NLP frameworks. We report on the performance, including time and memory statistics, of each
component on a selection of well-established datasets. Our system is publicly available for research use and external contributions, at:
http://github.com/CogComp/cogcomp-nlp.

1. Motivation
Natural Language Processing (NLP) is one of the fastest-
growing fields both in research and industrial work. Tools
that provide analysis of text by identifying syntactic and
semantic elements (e.g. named entity recognizers, syntac-
tic parsers, semantic role labelers) are widely used - typi-
cally many such components in combination - as inputs to a
more specialized (and complex) application. However, the
process of managing and aggregating these tools and their
inputs and outputs is typically labor-intensive and error-
prone, requiring significant engineering effort before the
target application can be built and evaluated. With the in-
troduction of new, complex tasks such as event detection or
cross-document coreference, and the increasing commer-
cial demand for text analysis, it is critical to build software
frameworks that give easy access to a wide range of exist-
ing NLP annotators and support straightforward extension
to others.
We introduce COGCOMPNLP, an NLP ecosystem pub-
lished under an academic-use license, which is designed
for management, aggregation, and application of NLP ana-
lytic components. It comes with a suite of NLP components
for syntactic and shallow semantic analysis, but also word
and phrase similarity metrics. It provides essential support
for text processing applications, including classes for text
cleaning and for reading a number of popular NLP corpora.
In addition to describing some key functionalities, we illus-
trate the use of COGCOMPNLP components in developing
a Semantic Role Labeling application: reading data from a
corpus; augmenting the resulting data-structures with NLP
components using the NLP pipeline; extracting features for
input to machine learning algorithms; training classifiers
using LBJAVA –another CogComp project (Rizzolo and

Roth, 2010); serializing the system outputs; and adding the
new SRL application to the pipeline for other applications
to use.

2. Terminology
The COGCOMPNLP framework builds on the conceptual
design and data-structures described in (Clarke et al., 2012;
Sammons et al., 2016). Here we give a brief summary of
the main structures and keywords used. A View is a data-
structure which contains an annotation structure of a text;
examples are tokens, lemmas or dependency parse trees.
An Annotator is a class which produces a View given a text,
and potentially some other Views. The main data-structure
used is TextAnnotation, which contains a document (e.g. a
phrase, a sentence, a paragraph) and its various Views.

3. Framework Design
A high-level view of the system is depicted in Figure 1. The
boxes show modules and edges show the dependencies be-
tween them (with the targets being the dependencies). We
describe each of these modules in the following sections.
Core Utilities. Contains the fundamental data-structures
and operators; hence many of the other modules depend on
it. A selection of important basic functionalities supported
by this module are:
• SQL-like operations on TextAnnotation for extracting pat-
terns
• Experiment utilities, such as P/R/F1 reporting, statistical
significance testing and cross-validation helpers
• String pattern-matching algorithms
• Utilities for reading and writing files, resources and an-
notations.

Se
nt

en
ce

sp
lit

tin
g

To
ke

ni
zi

ng
Le

m
m

at
iz

in
g

Pa
rt

of
Sp

ee
ch

ta
gg

in
g

Sh
al

lo
w

Pa
rs

in
g

N
ER

(4
la

be
ls)

Ex
te

nd
ed

N
ER

(1
5-

20
la

be
ls)

Co
ns

tit
ue

nc
y

Pa
rs

in
g

D
ep

en
de

nc
y

Pa
rs

in
g

Q
ua

nt
ity

N
or

m
al

iz
at

io
n

Ve
rb

-s
en

se
Cl

as
sifi

ca
tio

n

Te
m

po
ra

l N
or

m
al

iz
at

io
n

M
en

tio
n

D
et

ec
tio

n

Co
m

m
a S

RL
Pr

ep
os

iti
on

SR
L

Pr
op

ba
nk

(v
er

b)
SR

L

N
om

ba
nk

(n
om

in
al

) S
RL

Co
re

fe
re

nc
e r

es
ol

ut
io

n

Re
la

tio
n

Ex
tra

ct
io

n

Se
nt

im
en

t
O

pe
nI

E
W

ik
ifi

er

COGCOMPNLP (ours) X

Ja
va CORENLP X X X X X X X X X X X X X X

OPENNLP X X X X X X X X

Py
th

on SPACY X X X X X X X X X
NLTK X X X X X X

TEXTBLOB X X X X X X

Table 1: Summary of major annotators included in well-known NLP packages,

Core-Utilities

Edison

Corpus-Utilities …

Chunker

Similarity Utilities

PipelinePOS

Comma-SRL

Annotator Modules

Figure 1: Diagram of the components in COGCOMPNLP
and how they depend on each other. Each module to which
an arrow is pointing at, is a dependee project. The arrows
indicate the direction of dependence; for example Chunker
depends on Core-Utilities.

The key data-structures for interaction between compo-
nents – TextAnnotation, View, and Constituent – are illus-
trated in Figure 2. The TextAnnotation contains the raw
source text together with its tokenization and other anno-
tation layers added either by reading corpora annotations
or applying NLP components. Token indexes are used
to align constituents from different views, but each Con-
stituent tracks its character offsets in the raw text. The fig-
ure shows Part-of-Speech, Named Entity, Quantity, and Se-
mantic Role Label annotations, each in a separate View.

Corpus Utilities. While often overlooked and purely an
engineering effort, implementing code that reads data cor-
rectly and efficiently can be a time-consuming task. COG-
COMPNLP’s corpus reader module includes NLP corpus
readers that populate TextAnnotation objects. A few of the
important datasets supported by this module are:
• Propbank Semantic Role Labeling
• Treebank Shallow Parse
• PennTreebank Constituency Parse
• Nombank Semantic Role Labeling
• ACE 2004/2005 Named Entity, Relation, Co-reference,
and Event
• Ontonotes 5.0 POS, Named Entity, Syntactic Parse, and
Semantic Role Labeling
• TAC/ERE Event, Relation, and Named Entity

Similarity Utilities. For calculating semantic similarity
between words, phrases, and entities using both structured
and distributional representations. Each similarity func-

tion compares objects (words, phrases, named entities, sen-
tences) and returns a score indicating how similar they are.
Depending on the inputs, different algorithms are available:
• Word Similarity: For computing the similarity between
two words. The following representations are currently
supported: word2vec (Mikolov et al., 2013), paragram

(Wieting et al., 2015), esa (Gabrilovich and Markovitch,
2007), glove (Pennington et al., 2014), wordnet (Do et
al., 2009), phrase2vec (Yin and Schütze, 2014). Here is a
sample usage:
String representation = "esa";
WordSim ws = new WordSim(representation);
ws.compare("word", "sentence"); // 0.37

• Named-Entity Similarity: Comparing named entities re-
quires a different class of algorithm. COGCOMPNLP’s cur-
rent algorithm is based on (Do et al., 2009):
NESim nesim = new NESim();
nesim.compare("Donald Trump", "Trump"); // 0.9

• Phrasal Similarity: Algorithms to combine lexical-level
systems to make sentence-level decisions (Do et al., 2009):

Metric llm = new LLMStringSim(config);
String s1 = "Jack bought Alex's car";
String s2 = "Alex sold his car to Jack.";
llm.compare(s1, s2); // 0.75

Edison. Feature extraction is a crucial element in design
of NLP systems. EDISON (Sammons et al., 2016) is a fea-
ture extraction framework that uses the data-structures of
COGCOMPNLP core-utilities to extract features to be used
by machine learning algorithms. EDISON enables users to
define feature extraction functions that take as input the
Views and Constituents created by COGCOMPNLP’s An-
notators. This makes it possible to not only develop feature
sets like words, n-grams, and paths in parse trees, which
work with a single View, but also more complex features
that combine information from several Views.
This library has been successfully used to facilitate the fea-
ture extraction for several higher level NLP applications
like Semantic Role Labeling (Punyakanok et al., 2005), Co-
reference resolution (Rizzolo and Roth, 2016) and, Textual
Entailment (Sammons et al., 2010), which use information
across several Views over text to make a decision.

Figure 2: Illustration of the TextAnnotation, View, Constituent, and Relation data-structures in the Core Utilities module.

// assume 'srlTa' is a partially annotated text that comes from an earlier step
TextAnnotation srlTa = ...
AnnotatorService pipeline = PipelineFactory.buildPipeline(ViewNames.POS, ViewNames.NER_CONLL);
TextAnnotation augmentedSrlTa = pipeline.annotateTextAnnotation(srlTa);
List<Constituents> list = augmentedSrlTa.getView(ViewNames.POS).getConstituents();
System.out.println(list); // (NNP Pierre) (NNP Vinken) (, ,) (CD 61) (NNS years) (JJ old) (, ,)...

Figure 3: Code snippet for using pipeline

Annotators. Given a set of corpus readers that load in-
put data into unified data-structures, we build NLP annota-
tors which share many features from EDISON and train with
LBJAVA (Rizzolo and Roth, 2010) or Illinois-SL (Chang et
al., 2015). This means that they are very easy to retrain or
adapt to new domains and new languages. COGCOMPNLP
includes a wide range of annotators and supporting func-
tionality. Many of these annotators are state-of-the-art and
are widely usable across different tasks.
The complete list of syntactic and semantic annotations we
currently support is provided in Table 1, which also shows
NLP components of other NLP frameworks. To the best of
our knowledge this is the only NLP framework with such
a large variety of syntactic and semantic components (in
comparison, Stanford’s CORENLP offers 14 components,
OPENNLP 8, SPACY 9).
All of the the modules in our systems are actively up-
dated to improve their quality, while maintaining their in-
teroperability. These systems typically began as individual
projects in previous work and have evolved over the years.
In some cases the performance of components has been re-
duced for engineering purposes (e.g. faster speed, smaller
memory footprint, etc). In Table 2 we present a qualitative
assessment of the major components in COGCOMPNLP.
The components have state-of-the-art quality or very close
to the best existing results.

Pipeline. With all the Annotators generating the same
data-structures, the PIPELINE project provides a simple in-
terface to access Annotator components either individually
or as a group, with a single function call. Use of PIPELINE
is illustrated in Figure 3. A demo of PIPELINE is accessible
online at http://nlp.cogcomp.org.

Accessibility from other programming languages. The
majority of the implementation is in Java and hence COG-
COMPNLP is easily accessible to JVM-based languages
with direct calls.
To go beyond memory limitations of making direct calls
to PIPELINE and make it available to other programming
languages, the PIPELINE can be made accessible over a net-
work. Using an internal web-server, PIPELINE can be made
available over a network, making it accessible for a variety
of programming languages. Essentially a user can instan-
tiate an instance of PIPELINE server on a single machine
(with sufficient memory), which can be shared by many
users and queried from different languages.
We have created a Python interface, COGCOMPNLPY1

which works with direct calls (using PyJnius and Cython
(Behnel et al., 2011)) as well as over-network calls to the
Java back-end. Here is an example snippet showing how to
annotate a sentence with COGCOMPNLPY:
from ccg_nlpy import remote_pipeline
pipeline = remote_pipeline.RemotePipeline()
text = "Hello, how are you. I am doing fine"
ta = pipeline.doc(text)
print(ta.get_pos)
(UH Hello) (, ,) (WRB how) (VBP are) (PRP you)...

4. Related Work
One important aspect of our work is the collection of the
major NLP annotators. Table 1 contains a summary of
components that exist in other well-established NLP li-
braries. CORENLP (Manning et al., 2014) is a popular

1https://github.com/CogComp/cogcomp-nlpy

Task Dataset Measure Setting Result

Tokenization MASC (Ide et al., 2010) Accuracy – 97
POS (Roth and Zelenko,

1998) Penn Treebank (Bies et al., 2015) F1 – 96.13

NER (Ratinov and
Roth, 2009;

Redman et al.,
2016; Tsai and
Roth, 2016)

CoNLL (T. Kim Sang and
De Meulder, 2003) F1 – 91.12

Ontonotes (Hovy et al., 2006) F1 – 84.61
MUC-7 (Chinchor, 1998) F1 – 88.37

Enron (Shetty and Adibi, 2004) F1 – 77.21

TAC-KBP 2016
EDL shared task

F1 English 88.3
F1 Spanish 85
F1 Chinese 79.3

Shallow Parse (Punyakanok
and Roth, 2000)

CoNLL 2000 (Sang and
Buchholz, 2000) F1 – 93.58

Temporal
Normalization (Zhao

et al., 2012)

TempEval3
(UzZaman et al., 2013)

Exact match F1 /
Relaxed match F1 Temporal Span Extraction 79.35/

83.4

F1 Temporal normalization, given
a predicted temporal span 70.45

Mention Detection
ACE-05 (Walker et al., 2006) F1 Head detection 89.6

F1 Boundary detection given the
head 89.45

ERE F1 Head detection 81.7

F1 Boundary detection given the
head 88.74

Relation Extraction
(Chan and Roth, 2011) ACE 2005 (Walker et al., 2006) F1 Gold mention - Coarse Type 62.54

F1 Gold mention - Fine Type 58.35
Taxonomic Relations

(hypernyms, hyponyms, and
co-hypernyms)

Test-I of Do and Roth (2012) Accuracy – 86.1

Comma SRL (Arivazhagan
et al., 2016) (Arivazhagan et al., 2016) F1 – 83.6

Preposition SRL (Srikumar
and Roth, 2013) (Srikumar and Roth, 2013) F1 – 90.26

Verb SRL (Punyakanok et
al., 2004) PropBank (Palmer et al., 2005a) F1 – 76.22

Nominal SRL(Punyakanok
et al., 2004) NomBank (Meyers et al., 2004) F1 – 66.97

Coreference (Samdani
et al., 2014)

CoNLL-12 (Pradhan et al., 2012)
Average of F1

score of MUC, B3

Gold mentions 77.05

Predicted Mentions 60

ACE-04 (Doddington et al., 2004) B3 Gold mentions 79.42

Predicted Mentions 68.27

Wikifier (Tsai and Roth,
2016)

TAC-KBP 2016
EDL shared task

F1 English: NER+ link to freebase 76.5
F1 Spanish: NER+ link to freebase 75.1
F1 Chinese: NER+ link to freebase 70.6

Table 2: Qualitative evaluation of major components included in COGCOMPNLP.

library which contains various NLP components. While
missing a few modules (OpenIE and Constituency parsing),
COGCOMPNLP contains high-level annotators for Seman-
tic Role Labeling of verbs, nouns, commas, and preposi-
tions, while also offering a much wider range of supporting
functionality. Compared to OPENNLP (Baldridge, 2005),
SPACY2, NLTK (Bird, 2006) and TEXTBLOB (Loria et al.,
2014), COGCOMPNLP has many extra annotators. While
COGCOMPNLP is implemented in Java, its sister project
COGCOMPNLPY makes it accessible in Python.

Memory and speed comparison. To measure speed and
memory, we compile a collection of English raw text files
extracted from a news corpus (NYT files from English Gi-
gaword v5). The collected plain text corpus has 999 files,
665233 words (using linux ‘wc -w’ command).
To measure time and memory, we use the GNU time com-

2https://spacy.io

mand, which is programming-language agnostic. It reports
the time that it takes to run the program from start to end,
and it also captures the maximum resident set size of the
process during its lifetime. In reporting time we use three
definitions: (a) wall-clock time is the time that a clock on
the wall (or a stopwatch in hand) would measure as having
elapsed between the start and end of the process. (b) user
time is the amount of time spent in user code, and (c) system
time the amount of time spent in the kernel. For each of the
systems we use their latest available version (summarized
in Table 3).

Often NLP systems are implemented as a sequence of in-
terdependent components, and one would ideally measure
their specifications using only the subsequence up to and
including the component being evaluated. However, not all
systems have the same ordering of the components inter-
nally. In what follows, we show the speed/memory it takes

(a) Memory (GB): lower is better. Python-based tools have
lower memory footprint.

(b) Speed: Wall clock time (thousand tokens / second):
higher is better.

(c) Speed: User time (thousand tokens / second): higher is
better.

(d) Speed: System time (thousand tokens / second): higher is
better.

Figure 4: Speed and memory comparison between major NLP pipelines. SPACYis not shown in any of the figures, since
its components are not easy to separate.

Figure 5: Speed: Wall clock time (thousand tokens / sec-
ond): higher is better. The systems are set to produce Tok-
enizing, Sentence Splitting, POS tagging and Named Entity
Recognition. TEXTBLOB is not presented since it does not
have an NER.

to run the component being evaluated, with everything not
needed being turned off.
The results of the speed evaluation for the three tasks of
sentence-splitting, tokenizing, and POS tagging are sum-
marized in Figure 4. Overall, JDK-based systems tend to
need more memory (subfigure (a)). Differences in speed
are often related to the task at hand; for example for POS
tagging or tokenizing we do not see any significant differ-
ence.
In Figure 4 we do not show any results on SPACYsince un-
like other tools, in SPACY we did not find a clean-cut way
to study individual modules in isolation, In order to com-

Tool Version

So
ft

w
ar

e

COGCOMPNLP 4.0.2
CORENLP 3.8.0

SPACY 2.0.5
NLTK 3.2.5

TEXTBLOB 0.15.1
Maven 3.5.2

Java 1.8.0-151
Python 3.5.2

H
ar

dw
ar

e CPU
12 × Intel Xeon six

core 3.2GHz
Memory 32GB

Table 3: Specs of the software and hardware used in our
evaluation. For a fair comparison, we used the same ma-
chine to run all components.

pare other tools with SPACY we perform another experi-
ment where all the systems annotate Tokenizing, Sentence
Splitting, POS tagging and Named Entity Recognition to-
gether. The results of this speed evaluation is depicted in
Figure 5.

5. SRL: A Sophisticated Application
In this section we illustrate the ways COGCOMPNLP sup-
ports development and evaluation of complex NLP applica-
tions using the task of Semantic Role Labeling (SRL) as an
example. SRL identifies predicate-argument structures in

String corpusDir = "/local/path/to/ontonotes5.0/corpus/";
OntonotesReader srlReader = new OntonotesSrlReader(corpusDir);
while (srlReader.hasNext()) {

TextAnnotation documentSrl = srlReader.next();
PredicateArgumentView srlView = (PredicateArgumentView) documentSrl.getView(ViewNames.SRL_VERB);
for (Constituent verbPredicate : srlView.getPredicates()) {

for (Relation argumentRelation : srlView.getArguments(verbPredicate)) {
String argumentType = argumentRelation.getRelationName();
Constituent argument = argumentRelation.getTarget();
...

}
}

Figure 6: Code snippet for reading OntoNotes and iterating over SRL predicates

// assume our new component is called 'MySrlApp'
Annotator mySrlApp = new MySrlApp(); // initialize the SRL annotator
AnnotatorService pipeline = PipelineFactory.buildPipeline(ViewNames.Lemma, ViewNames.POS);
pipeline.addAnnotator(mySrlApp); // add the annotator to an pipeline
String text = "John Smith said Jane Smith bought four cakes and two apples.";
TextAnnotation outputTa = pipeline.createAnnotatedTextAnnotation(text); // annotate with annotators
boolean useJson = true;
SerializationHelper.serializeTextAnnotationToFile(outputTa, "outputFile.json", useJson);

Figure 7: Code snippet for adding a new component to the pipeline. The expected output is shown in Figure 2.

text; while nouns, prepositions, and other word types may
express predicates we focus here on verb SRL (Palmer et
al., 2005b), using the OntoNotes 5.0 corpus (Weischedel et
al., 2013). Due to space requirements, we will focus on
representative elements of the task in some steps, but the
overall illustration should allow other NLP researchers to
easily implement the relevant steps for themselves and the
tasks they are interested in.

5.1. Reading the Data
The OntoNotes corpus has many layers of NLP annotations
stored in a deep directory structure. The COGCOMPNLP
Ontonotes reader loads each document and its annotations
into a TextAnnotation data-structure (see the indicated Views
in Figure 2, which shows only one representative sentence).
The user can iterate over the predicate argument structures
to process each in turn as indicated in the code snippet in
Figure 6.

5.2. Adding more NLP information
In order to predict SRL structures, we want to use other syn-
tactic and semantic information represented by the source
text, such as the outputs from a syntactic parser and a
named entity recognizer. Figure 3 illustrates the use of
COGCOMPNLP’s PIPELINE to add these annotations to
the same data-structure returned by the Ontonotes reader
in section 5.1.

5.3. Candidate Extraction & Feature Generation
SRL requires a number of component predictions that are
assembled to produce the final output. One such component
identifies argument boundaries, and a typical approach is to
generate a number of candidates and then predict for each
whether it is a valid SRL argument. The code snippet in
Figure 8 enumerates the syntactic parse constituents and
applies EDISON feature extractors to generate inputs for a
machine learning component.

5.4. Training and Evaluating a Classifier
Now that we have features extracted, we can generate ex-
amples for a classifier by comparing candidate boundaries
with gold standard SRL argument boundaries to determine
the appropriate label. These examples can be collected
and passed to a learning component defined using LB-
JAVA (Rizzolo and Roth, 2010), as shown in Figure 9.
(see (Rizzolo and Roth, 2010) for a detailed overview and
examples of LBJAVA).
The learner’s performance can be easily computed using
classes from COGCOMPNLP’s core-utilities module. The
library provides a range of supporting functionality for
cross-validation and computation of experimental statistics
that goes well beyond what we can illustrate here.

5.5. Using the New NLP Component
Once a new component/application has been developed, its
outputs can easily be made available to other applications
either via serialization, or by making the component an An-
notator and adding it to the pipeline. Figure 7 shows how
these tasks can be done.

6. Conclusion
COGCOMPNLP is a mature, well-architected, and largely
well-documented NLP framework available under an aca-
demic license. It has been developed with the twin goals
of making it easy to obtain NLP annotations from off-the-
shelf components, and developing and evaluating new ap-
plications. In this paper we explain the NLP tools it con-
tains; the pipeline application for applying these tools to
input text; its word and phrase similarity metrics. In an
earlier work (Sammons et al., 2016) we have described its
support for feature extraction. We have illustrated its use to
develop sophisticated NLP applications by showing how to
implement Semantic Role Labeling, a key NLP component.

/** predicate for selecting candidate predicates (here, verbs) */
private static class IsVerb extends Predicate<Constituent> {

// expects POS constituent
@Override
public Boolean transform(Constituent c) {

return c.getLabel().startsWith("V");
}

}

/** extract positive and negative examples for training. */
public static List<Pair<String, Pair<Constituent, Constituent>>> generateExamples(TextAnnotation ta) {

List<Pair<String, Pair<Constituent, Constituent>>> examples = new ArrayList<>();
PredicateArgumentView verbSrlView = (PredicateArgumentView) ta.getView(ViewNames.SRL_VERB);
IQueryable<Constituent> verbs =

new QueryableList<>(ta.getView(ViewNames.POS).getConstituents()).where(new IsVerb());
TreeView parseView = (TreeView) ta.getView(ViewNames.PARSE_STANFORD);

for (Constituent verb : verbs) {
List<Constituent> allArgCandidates = getArgCandidates(parseView, verb.getStartSpan());
for (Constituent candidate: allArgCandidates) {

String label = "negative";
if (findGoldArgMatch(candidate, verb, verbSrlView)) label = "positive";
examples.add(new Pair(label, new Pair(candidate, verb)));

}
}
return examples;

}

/** check in SRL View whether candidate argument, predicate match a gold argument, predicate pair */
public static boolean findGoldArgMatch(Constituent candidate, Constituent verb, PredicateArgumentView srlView) {

List<Constituent> srlArgMatches =
srlView.getConstituentsMatchingSpan(candidate.getStartSpan(), candidate.getEndSpan());

Set<Constituent> srlPredMatches = new HashSet<>(
srlView.getConstituentsMatchingSpan(verb.getStartSpan(), verb.getEndSpan()));

srlPredMatches.retainAll(new HashSet<>(srlView.getPredicates()));

for (Constituent srlArgMatch : srlArgMatches)
for (Relation rel : srlArgMatch.getIncomingRelations())

if (srlPredMatches.contains(rel.getSource())) return true;

return false;
}

/** use syntactic parse to identify parse constituents near the predicate */
public static List<Constituent> getArgCandidates(TreeView parseView, int predicateIndex) {

// consider siblings and child nodes of predicate
List<Constituent> argumentCandidates = new ArrayList<>();
Tree<Constituent> t = parseView.getConstituentTree(0);
Tree<Constituent> predicateTree = t.getYield().get(predicateIndex).getParent();
Tree<Constituent> predicateParent = predicateTree.getParent();

for (Tree<Constituent> sibling : predicateParent.getChildren())
argumentCandidates.add(sibling.getLabel());

for (Tree<Constituent> child : predicateTree.getChildren())
if (child != predicateTree) argumentCandidates.add(child.getLabel());

return argumentCandidates;
}

Figure 8: Code snippet for generating verb SRL argument examples.

Acknowledgement

The authors would like to thank all the other contributors to
the project. This material is partly based on research spon-
sored by DARPA under agreement number FA8750-13-2-
0008. The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes notwith-
standing any copyright notation thereon. This work was
also supported by Contract HR0011-15-2-0025 with the US
Defense Advanced Research Projects Agency (DARPA).
Approved for Public Release, Distribution Unlimited. This
work was partly funded by a grant from the Allen Institute
for Artificial Intelligence (allenai.org); by Google; by NSF
grant BCS-1348522; and by NIH grant R01-HD054448.
The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily rep-

resenting the official policies or endorsements, either ex-
pressed or implied, of any research sponsors listed above.

References
Arivazhagan, N., Christodoulopoulos, C., and Roth, D.

(2016). Labeling the semantic roles of commas. In Proc.
of the Conference on Artificial Intelligence (AAAI), 2.

Baldridge, J. (2005). The OpenNLP project. URL:
http://opennlp. apache. org/index. html,(accessed 2
February 2012).

Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn,
D. S., and Smith, K. (2011). Cython: The best of both
worlds. Computing in Science & Engineering, 13(2):31–
39.

// a trivial classifier, to return a feature for a predicate-argument structure
public class SrlWordAndPos extends Classifier {

private WordAndPos wordAndPos = new WordAndPos();
@Override
public FeatureVector classify(Object arg) {

Pair<Constituent, Constituent> argAndPred = ((Pair<String, Pair<Constituent, Constituent>>) arg).getSecond();
return FeatureUtilities.getLBJFeatures(FeatureUtilities.conjoin(

wordAndPos.getFeatures(argAndPred.getFirst()), wordAndPos.getFeatures(argAndPred.getSecond())));
}

}
// LBJava code, to define a classifier, its input features and the expected output
import SrlWordAndPos;

discrete ArgumentIdentifier(Pair<String, Pair<Constituent, Constituent>> argAndPred) <-
learn IsArgument
using SrlWordsAndPos
from new SrlArgumentReader(Constants.corpusHome) 50 rounds
with SparseNetworkLearner {
SparseAveragedPerceptron.Parameters p = new SparseAveragedPerceptron.Parameters();
p.learningRate = .1;
baseLTU = new SparseAveragedPerceptron(p);

}

Figure 9: LBJava code for training and evaluating an SRL argument identifier classifier. The ArgParser argument is a
class that extends LBJava’s Parser interface, and returns an argument example (label ‘positive’ or ‘negative’, argument
constituent, and predicate constituent) for each call of its next() method.

Bies, A., Mott, J., and Warner, C. (2015). English news
text treebank: Penn treebank revised.

Bird, S. (2006). Nltk: the natural language toolkit. In Pro-
ceedings of the COLING/ACL on Interactive presenta-
tion sessions, pages 69–72. Association for Computa-
tional Linguistics.

Chan, Y. and Roth, D. (2011). Exploiting syntactico-
semantic structures for relation extraction. In Proc. of
the Annual Meeting of the Association for Computational
Linguistics (ACL), Portland, Oregon.

Chang, K.-W., Upadhyay, S., Chang, M.-W., Srikumar, V.,
and Roth, D. (2015). Illinoissl: A java library for struc-
tured prediction. arXiv preprint arXiv:1509.07179.

Chinchor, N. A. (1998). Overview of muc-7/met-2. Tech-
nical report, SCIENCE APPLICATIONS INTERNA-
TIONAL CORP SAN DIEGO CA.

Clarke, J., Srikumar, V., Sammons, M., and Roth, D.
(2012). An nlp curator (or: How i learned to stop wor-
rying and love nlp pipelines). In Proc. of the Interna-
tional Conference on Language Resources and Evalua-
tion (LREC), 5.

Do, Q. and Roth, D. (2012). Exploiting the wikipedia
structure in local and global classification of taxonomic
relations. Journal of Natural Language Engineering
(JNLE), 18(2):235–262, 4.

Do, Q., Roth, D., Sammons, M., Tu, Y., and Vydiswaran,
V. (2009). Robust, light-weight approaches to compute
lexical similarity. Computer Science Research and Tech-
nical Reports, University of Illinois, page 94.

Doddington, G. R., Mitchell, A., Przybocki, M. A.,
Ramshaw, L. A., Strassel, S., and Weischedel, R. M.
(2004). The automatic content extraction (ace) program-
tasks, data, and evaluation. In LREC, volume 2, page 1.

Gabrilovich, E. and Markovitch, S. (2007). Computing
semantic relatedness using wikipedia-based explicit se-
mantic analysis. In IJcAI, volume 7, pages 1606–1611.

Hovy, E., Marcus, M., Palmer, M., Ramshaw, L., and
Weischedel, R. (2006). Ontonotes: the 90% solution. In
Proceedings of the human language technology confer-

ence of the NAACL, Companion Volume: Short Papers,
pages 57–60. Association for Computational Linguistics.

Ide, N., Fellbaum, C., Baker, C., and Passonneau, R.
(2010). The manually annotated sub-corpus: A commu-
nity resource for and by the people. In Proceedings of the
ACL 2010 conference short papers, pages 68–73. Asso-
ciation for Computational Linguistics.

Loria, S., Keen, P., Honnibal, M., Yankovsky, R., Karesh,
D., Dempsey, E., et al. (2014). Textblob: simplified text
processing. Secondary TextBlob: Simplified Text Pro-
cessing.

Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J. R.,
Bethard, S., and McClosky, D. (2014). The stanford
corenlp natural language processing toolkit. In ACL
(System Demonstrations), pages 55–60.

Meyers, A., Reeves, R., Macleod, C., Szekely, R., Zielin-
ska, V., Young, B., and Grishman, R. (2004). The
nombank project: An interim report. In Proceedings of
the Workshop Frontiers in Corpus Annotation at HLT-
NAACL 2004.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and
Dean, J. (2013). Distributed representations of words
and phrases and their compositionality. In Advances
in neural information processing systems, pages 3111–
3119.

Palmer, M., Gildea, D., and Kingsbury, P. (2005a). The
proposition bank: An annotated corpus of semantic roles.
Computational linguistics, 31(1):71–106.

Palmer, M., Gildea, D., and Kingsbury, P. (2005b). The
Proposition Bank: An annotated corpus of semantic
roles. Computational Linguistics, 31(1):71–106, March.

Pennington, J., Socher, R., and Manning, C. (2014).
Glove: Global vectors for word representation. In Pro-
ceedings of the 2014 conference on empirical methods
in natural language processing (EMNLP), pages 1532–
1543.

Pradhan, S., Moschitti, A., Xue, N., Uryupina, O., and
Zhang, Y. (2012). Conll-2012 shared task: Modeling
multilingual unrestricted coreference in ontonotes. In

Joint Conference on EMNLP and CoNLL-Shared Task,
pages 1–40. Association for Computational Linguistics.

Punyakanok, V. and Roth, D. (2000). Shallow parsing by
inferencing with classifiers. In Proc. of the Conference
on Computational Natural Language Learning (CoNLL),
pages 107–110.

Punyakanok, V., Roth, D., Yih, W., and Zimak, D. (2004).
Semantic role labeling via integer linear programming
inference. In Proc. of the International Conference
on Computational Linguistics (COLING), pages 1346–
1352, Geneva, Switzerland, 8.

Punyakanok, V., Roth, D., and Yih, W. (2005). The ne-
cessity of syntactic parsing for semantic role labeling. In
Proc. of the International Joint Conference on Artificial
Intelligence (IJCAI), pages 1117–1123.

Ratinov, L. and Roth, D. (2009). Design challenges and
misconceptions in named entity recognition. In Proc.
of the Conference on Computational Natural Language
Learning (CoNLL), 6.

Redman, T., Sammons, M., and Roth, D. (2016). Illinois
named entity recognizer: Addendum to ratinov and roth
’09 reporting improved results. Technical report.

Rizzolo, N. and Roth, D. (2010). Learning based java for
rapid development of nlp systems. In Proc. of the Inter-
national Conference on Language Resources and Evalu-
ation (LREC), Valletta, Malta, 5.

Rizzolo, N. and Roth, D. (2016). Integer linear program-
ming for co-reference resolution. In Roland Stuckardt
Massimo Poesio et al., editors, Anaphora Resolution: Al-
gorithms, Resources, and Applications. Springer-Verlag.

Roth, D. and Zelenko, D. (1998). Part of speech tagging
using a network of linear separators. In Coling-Acl, The
17th International Conference on Computational Lin-
guistics, pages 1136–1142.

Samdani, R., Chang, K.-W., and Roth, D. (2014). A dis-
criminative latent variable model for online clustering.
In Proc. of the International Conference on Machine
Learning (ICML).

Sammons, M., Vydiswaran, V., and Roth, D. (2010). Ask
not what textual entailment can do for you... In Proc. of
the Annual Meeting of the Association for Computational
Linguistics (ACL), Uppsala, Sweden, 7. Association for
Computational Linguistics.

Sammons, M., Christodoulopoulos, C., Kordjamshidi, P.,
Khashabi, D., Srikumar, V., Vijayakumar, P., Bokhari,
M., Wu, X., and Roth, D. (2016). Edison: Feature ex-
traction for nlp, simplified. In Nicoletta Calzolari (Con-
ference Chair), et al., editors, Proc. of the Interna-
tional Conference on Language Resources and Evalua-
tion (LREC). European Language Resources Association
(ELRA).

Sang, E. F. T. K. and Buchholz, S. (2000). Introduction
to the conll-2000 shared task chunking. In CoNLL/LLL,
pages 127–132. Association for Computational Linguis-
tics.

Shetty, J. and Adibi, J. (2004). The enron email dataset
database schema and brief statistical report. Information
sciences institute technical report, University of South-
ern California, 4(1):120–128.

Srikumar, V. and Roth, D. (2013). Modeling semantic re-
lations expressed by prepositions. 1:231–242.

T. Kim Sang, E. F. and De Meulder, F. (2003). Introduction
to the conll-2003 shared task: Language-independent
named entity recognition. In Proceedings of the sev-
enth conference on Natural language learning at HLT-
NAACL 2003-Volume 4, pages 142–147. Association for
Computational Linguistics.

Tsai, C.-T. and Roth, D. (2016). Illinois cross-lingual wiki-
fier: Grounding entities in many languages to the english
wikipedia. In Proc. of the International Conference on
Computational Linguistics (COLING) Demonstrations,
12.

UzZaman, N., Llorens, H., Derczynski, L., Allen, J., Verha-
gen, M., and Pustejovsky, J. (2013). Semeval-2013 task
1: Tempeval-3: Evaluating time expressions, events, and
temporal relations. In Second Joint Conference on Lex-
ical and Computational Semantics (* SEM), Volume 2:
Proceedings of the Seventh International Workshop on
Semantic Evaluation (SemEval 2013), volume 2, pages
1–9.

Walker, C., Strassel, S., Medero, J., and Maeda, K. (2006).
Ace 2005 multilingual training corpus. Linguistic Data
Consortium, Philadelphia, 57.

Weischedel, R., Palmer, M., Marcus, M., Hovy, E., Prad-
han, S., Ramshaw, L., Xue, N., Taylor, A., Kaufman,
J., Franchini, M., et al. (2013). Ontonotes release 5.0
ldc2013t19. Linguistic Data Consortium, Philadelphia,
PA.

Wieting, J., Bansal, M., Gimpel, K., Livescu, K., and
Roth, D. (2015). From paraphrase database to com-
positional paraphrase model and back. arXiv preprint
arXiv:1506.03487.

Yin, W. and Schütze, H. (2014). An exploration of embed-
dings for generalized phrases. In Proceedings of the ACL
2014 Student Research Workshop, pages 41–47.

Zhao, R., Do, Q., and Roth, D. (2012). A robust shallow
temporal reasoning system. In Proc. of the Annual Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics (NAACL), 6.

